Note

Isolation and identification of $O-\beta$ -D-fructofuranosyl- $(2 \rightarrow 1)$ - $O-\beta$ -D-fructofuranosyl- $(2 \rightarrow 1)$ -D-fructose, a product of the enzymic hydrolysis of the inulin from *Cichorium intybus*

André De Bruyn ^a, Araceli Peña Alvarez ^a, Pat Sandra ^a and Leen De Leenheer ^b ^a Laboratory of Organic Chemistry, University of Gent, Krijgslaan 281 (S4), B-9000 Gent (Belgium)

(Received November 30th, 1991; accepted March 24th, 1992)

There is a growing demand for sweeteners, alternative to sucrose, that have additional nutritional properties, for example, a low calorific value, a dietary fibre effect, or a selective bifidogenic (for certain bacteria from the Bifidobacterium family)-promoting effect.

Non-reducing glucofructo-oligosaccharides¹⁻⁴ GF_n (1) with n usually 1-5, and obtained by the action of fructosyltransferases⁵ on saccharose, are typical examples of sweeteners with the above-mentioned properties⁶. Hydrolysis of inulin by a specifical endo-type inulinase⁷ yields not only GF_n but also the reducing fructo-oligosaccharides F_n (2). The source of these oligofructoses is inulin as, for example, found in chicory roots. Inulin is a linear glucofructan GF_n with n in the range⁸ 2 to > 50.

We now report on the title trisaccharide F_3 (2, n = 1), isolated from the mixture obtained by the hydrolysis of inulin extracted from the roots of chicory (*Cichorium intybus*) with an endo-inulinase⁷. Although the ¹³C NMR data for the disaccharide F_2 (2, n = 0) have been reported⁹, for F_3 only partial data have been published hitherto¹⁰.

Inulin was partially hydrolysed by an endo-inulinase⁷ to give a mixture of products that contained ~85% of oligosaccharides. This proportion was increased to ~95% by chromatography on a cation-exchange (K⁺) resin. The poor mixture was fractionated according to dp on octadecyl silica gel (Fig. 1), and fraction DP₃ was fractionated further on Aminex HPX-87K (Fig. 2A). HPLC chromatography (Fig. 2B) of the major fraction shown in Fig. 2A gave pure F₃, the structure of which was established by NMR spectroscopy as $O-\beta$ -D-fructofuranosyl-(2 \rightarrow 1)-O-

b Sugar Refinery of Tienen, New Business Development, Aandorenstraat 1, B-3300 Tienen (Belgium)

Correspondence to: Dr. A. De Bruyn, Laboratory of Organic Chemistry, University of Gent, Krijgslaan 281 (S4), B-9000 Gent, Belgium.

 β -D-fructofuranosyl- $(2 \to 1)$ -D-fructose (2, n = 1). A non-reducing anhydro analogue of this compound has been reported⁹.

The ¹H NMR data of F₃ are given in Table I; there were no resonances typical of H-1 of D-glucopyranosyl moieties, which indicates the absence of nystose (GF₃) as a contaminant.

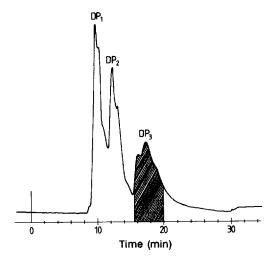


Fig. 1. HPLC of enriched oligosaccharide fraction on octadecyl silica gel (see Experimental for details).

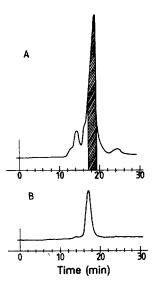


Fig. 2. A, HPLC of fraction DP₃ from Fig. 1 on Aminex HPX-87K (see Experimental for details); B, rechromatography of marked fraction in A.

The region δ 3.5-3.8 was too complex for analysis, but the resonances in the region δ 4.3-3.9 indicate that there were two β -D-fructofuranosyl moieties and a D-fructose moiety that was \sim 80% β pyranose and \sim 20% β furanose.

The assignments were based on the results of De Bruyn and co-workers^{11,12}. The presence of a doublet and a triplet $(J_{3,4} \approx J_{4,5} \approx 8.3 \text{ Hz})$ at δ 4.05–4.25 is typical for H-3 and H-4, respectively, of a β -D-fructofuranosyl moiety. The pattern for the resonances at δ 3.95–4.0 is typical for the resonances of H-5,6A of a β -D-fructopyranose residue and the degenerate doublet at δ 4.08 is typical for H-4 of a β -D-fructofuranose residue. The integration of these signals indicates the

TABLE I ¹H NMR data for a solution of F_3 (2, n = 1) in D_2O

	Chemical shifts (δ in ppm vs. Me ₄ Si)									
	H-1a	H-1b	H-3	H-4	H-5	H-6a	H-6b			
β-D-Fruf A			4.21	4.13						
β-D-Fru f B			4.14	4.08						
β-D-Fru p C					3.96	3.97				
β-D-Fruf C			4.08	4.08						
	Coupling constants (Hz)									
	$\overline{J_{1a,1b}}$	J _{3,4}	J _{4,5}	J _{5,6}	6a	J _{5,6b}	J _{6a,6b}			
β-D-Fru f A		8.3	8.3							
β-d-Fruf B		8.3	8.3							
β-D-Fru p C			3.2	1		1.6	-13.3			

	C-1	C-2	C-3	C-4	C-5	C-6
β-D-Fru f A	61.1 "	104.4	77.6	74.9 "	81.9 a	63.0
β-D-Fruf B	61.2 a	103.7	78.5	75.1 ^a	81.6 a	63.0
β-D-Frup C	64.2	98.5	68.9	69.8	70.2	62.6
β-D-Fru f C	62.7	104.6	75.0	75.2	82.0	62.9

TABLE II

¹³C NMR data for a solution of F_3 (2, n = 1) in D_2O

approximate ratios 1:1:0.8:0.2 for β -D-Fru f A, β -D-Fru f B, β -D-Fru f C, and β -D-Fru f C. The proportions of the last two moieties are close to those found for a solution of D-fructose in D₂O.

The 13 C NMR data for F_3 (Table II) were assigned by comparison with known data 15,16 . The resonance at δ 104.4 is assigned to C-2" of β -D-Fru f A. The other resonance in this region at δ 103.7 (with a deviation of 0.7 ppm from the reference data) was assigned to C-2' of β -D-Fru f B, the linkage of which to β -D-Fru f C may cause such a deviation 16,17 . The presence of a D-fructopyranose ring is confirmed by its C-2 resonance at δ 98.5. The resonance at δ 104.4 shows a shoulder that probably originates from the resonance for C-2 of the β -D-Fru f modification of residue C.

For the two β -D-Fru f rings A and B, the resonances for C-5',5", C-3',3", and C-4',4" are expected at δ 82, 77.6, and 74.7, respectively. The resonance for C-3' has a rather high frequency (δ 78.5) which reflects the effect of the 2'-linked β -D-Fru p residue.

There are five resonances in the region δ 60–64, among which that at δ 63.0 is for 2 C. The resonances for C-6',6" of the β -D-fructofuranosyl residues are expected at δ 63.2 and those for C-1',1" at δ 61.1. The resonance at δ 98.5 indicates that a β -D-Frup residue is present¹⁵. When the reference data for β -D-fructopyranose¹⁵ are used, and taking into consideration differences up to 2.5 ppm in the β effects of glycosylation¹⁵, good agreement is found with the data for F_3 .

For the β -D-Fru p C residue, the following resonances were found: δ 64.2 (C-1, expected δ 64.7), 62.6 (C-6, expected δ 64.1), 68.9 (C-3, expected δ 68.9), 69.8 (C-4, expected δ 70.5), and 70.2 (C-5, expected δ 70.0). Although the resonances for β -D-Fru f C are of low intensity, they can be assigned by comparison with those 15 of β -D-fructofuranoses, namely, δ 62.7 (C-1, δ 63.6), 104.6 (C-2, δ 102.2), 75.0 (C-3, δ 76.4), 75.2 (C-4, δ 75.4), 82.0 (C-5, δ 81.6), and 62.9 (C-6, δ 63.2).

The β configurations of the non-reducing moieties A and B are indicated by the chemical shifts for the C-3' and C-3" resonances (expected at δ 76.4 for β and δ 82.9 for α with ± 2 ppm caused by the linkage¹⁷). For the reducing moiety, the α -D-Fru β form occurs to the extent of 4–10%, whereas the α -D-Fru β form is almost non-existent¹³.

^a Assignments for rings A and B may be reversed.

For sugar units 2-linked to the β -D-Fru f moieties, some generalities have been proposed 17. Thus, the upfield shift of 2 ppm for the C-1 resonance and the downfield shift of 1.1-1.8 ppm for the C-2 resonance accord with the reported data. Also, a slight downfield shift for the C-3" resonance was observed, but that for C-3' was 1 ppm to lower field for which no explanation can be offered.

For the reducing terminal β -D-Fru f residue, the 1-linkage caused shifts in the following resonances: 0.9 ppm upfield for C-1, 2.4 ppm downfield for C-2, and 1.4 ppm upfield for C-3.

Thus, the NMR data indicate structure 2 (n = 1) for F_3 .

EXPERIMENTAL

Isolation of the fructotrisaccharide (inulotriose) F_3 .—Inulin, extracted from chicory roots (Cichorium intybus), was partially hydrolysed by an endo-inulinase⁷. The crude syrupy product, which contained 85% of oligosaccharides, was desalted by ion-exchange and further enriched by chromatography on a cation-exchange (K⁺) resin (Illinois Water Treatment System). This commercial process gave an enriched fraction that contained 95% of fructo-oligosaccharides (mainly GF_n) and a poor fraction with 55% oligosaccharides ($GF_n + F_n$).

- GLC (1 h, 50°) of the trimethylsilyl derivatives (pyridine-hexamethyldisilazane-chlorotrimethylsilane, 3:3:1) on a fused-silica OV1 capillary column revealed that the major component (25%) in this fraction had dp 3. The enriched fraction was fractionated as follows.
- (a) Preparative HPLC on octadecyl silica gel. A column (250×22 mm) of RSiL C18 HL ($10 \mu m$) (RSL-Biorad, Eke, Belgium) was used with a Varian 5000 LC instrument equipped with a Waters R · 401 refractive index detector. An aqueous 20% solution of the poor fraction was injected into a 1-mL sample loop, and eluted with H_2O at 7 mL/min at room temperature. Fraction DP₃ has T 17.8 min (Fig. 1). The fractionation was repeated ten times and yielded ~ 100 mg of DP₃.
- (b) Preparative HPLC on Aminex HPX-87K. A solution of DP₃ (100 mg) in water (10 mL) was injected (0.5-mL sample loop, 15 injections) onto 2 columns (300 × 78 mm) of Aminex HPX-87K (RSL-Biorad) in series and eluted with water (adjusted to pH 9.6 with KOH) at 0.6 mL/min at room temperature. The instrument and detector were as in (a). The appropriate fractions were combined and concentrated to give O- β -D-fructofuranosyl-(2 \rightarrow 1)-O- β -D-fructofuranosyl-(2 \rightarrow 1)-D-fructose (F₃, 75 mg), mp 120° (dec), [α]²⁰ $_{\rm D}$ $_{\rm D}$

Anal. Calcd for $C_{18}H_{32}O_{16}$: C, 42.83; H, 6.34; O, 50.83. Found: C, 43.02; H, 6.81.

Hydrolysis (0.1 M HCl, 1 h, 60°) of F_3 gave D-fructose, mp 102° , $[\alpha]_D^{20} - 98^\circ$ (c 2, H_2O , 48 h) (cf. ref. 18).

NMR spectra.—The ¹H NMR spectra (500.11 MHz) were recorded with a Bruker AM 500 spectrometer, at room temperature, using quadrature detection, a pulse angle of 19°, and a resolution of 0.33 Hz/point. The ¹³C NMR spectra (90.55

MHz) were recorded with a Bruker AM 360 spectrometer, using a pulse angle of 18° and a resolution of 1.327 Hz/point.

Each sample was dissolved in D_2O . For the ¹H NMR spectra, the water resonance (δ 4.8) was used as a secondary reference; for the ¹³C NMR spectra, dioxane (δ 67.4) was used as a secondary reference.

REFERENCES

- 1 N. Hosoya, B. Dhorranintra, and H. Hidaka, J. Clin. Biochem. Nutr., 5 (1988) 67-74.
- 2 T. Oku, T. Tokunaga, and N. Hosoya, J. Nutr., 114 (1984) 1574-1581.
- 3 H. Hidaka, T. Eida, T. Takizawa, T. Tokunaga, and Y. Tashiro, *Bifidobacteria Microflora*, 5 (1986) 37-50.
- 4 H. Hidaka, M. Hirayama, and K. Yamada, J. Carbohydr. Chem., 10 (1991) 509-522.
- 5 T. Adachi and H. Hidaka, U.S. Pat. 4, 681, 771 (1987); Chem. Abstr., 96 (1982) 33626u.
- 6 A.D. French, J. Plant Physiol., 134 (1989) 125-136.
- 7 B.E. Norman and B. Højer-Pedersen, Denpun Kagaku, 36 (1989) 203-111.
- 8 W. Praznik and R. Beck, J. Chromatogr., 348 (1985) 187-197.
- 9 S.M. Strepkov, Dokl. Akad. Nauk SSSR, 124 (1959) 1344-1346; Chem. Abstr., 53 (1959) 12686c.
- 10 N. Shiomi and S. Onodera, Agric. Biol. Chem., 54 (1990) 215-216.
- 11 A. De Bruyn, M. Anteunis, and G. Verhegge, Carbohydr. Res., 41 (1975) 295-297.
- 12 A. De Bruyn, J. Van Beeumen, M. Anteunis, and G. Verhegge, Bull. Soc. Chim. Belg., 84 (1975) 799-811.
- 13 M. Jaseja, A.S. Perlin, and P. Davis, Magn. Reson. Chem., 28 (1990) 283-289.
- 14 S.J. Angyal, Adv. Carbohydr. Chem. Biochem., 42 (1984) 15-68.
- 15 K. Bock and C. Pedersen, Adv. Carbohydr. Chem. Biochem., 41 (1983) 27-66.
- 16 K. Bock, C. Pedersen, and H. Pedersen, Adv. Carbohydr. Chem. Biochem., 42 (1984) 193-225.
- 17 A. De Bruyn and J. Van Loo, Carbohydr. Res., 211 (1991) 131-136.
- 18 P.M. Collins (Ed.), Carbohydrates, Chapman and Hall, London 1987, pp 223-224.